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Abstract

Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in

type-II spontaneous parametric down-conversion is demonstrated by the observation of quantum in-
terference with 98 % visibility in a simple beam-splitter (Hanburry Brown-Twiss) antieorrelation ex-

periment. The nonloeal cancellation of two-photon probability amplitudes a_s a result of this double

entanglement allows us to demonstrate two different types of Bell's inequality violations in one exper-

imental setup.

1 Introduction

Two-particle entangled states play a particularly important role in the study of the Einstein-Podolsky-

Rosen (EPR) paradox [1] and in the test of Bell's inequalities [2]. Entangled states are states of two or

more particles that can not be written as products of single particle states. [1]. The physical consequences

resulting from the EPR states violate cl,'ussieal local realism [3].

In the past, EPR type two-particle entanglement hms been demonstrated by two types of experiments:

(1) two-particle pol_ization correlation measurements; most of the historical EPR-Bohm experiments [4]

and the memsurements testing Bell's inequality exhibited nonlocal two-particle polarization correlation

[5]. These experiments demonstrated the EPR type two-particle spin-type entanglement. (2) two-particle

interference (fourth order interference) experiments; recent two-particle nonclassical interference experi-

ments demonstrated two-particle space-time entanglement [6].

Usually two-photon entanglement appears in the form that if one wants to measure the linear po-

larization of a single photon, one would find that neither of them ha,s a preferred polarization direction,

however, whenever a single photon is measured to be polarized in a certain direction the other one must

be polarized orthogonal to that direction. A typical EPR type two-photon space-time entangled state,

was proposed by Franson recently [7]. In this state one can never predict "which path" for a single photon,

however, if one of the photons traveled through the longer (shorter) path the other must have traveled

through the longer (shorter) path. The signature of this state is a cosine sum frequency interference

fringe pattern of the coincidence counting rate.

The non-local spin or space-time two-particle entanglement phenomena is unusual from the classical

theory point of view. The third type of simultaneous two- particle entanglement both in spin and in space-

time will be discussed in detail by reporting several experiments. In these experiments, it is interesting to

see that the measurement of the spin and space-time observables of either particle determines the value

of these observables for the other particle with unit probability.

2 EPR experiments

Spontaneous parametric down-conversion (SPDC) is one of the most effective sources for generating two-

photon entangled states. In SPDC a pump beam is incident on a birefringent crystal. The nonlinearity of
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the crystal leads to the spontaneous emission of a pair of entangled light quanta which satisfy the pha_sc

matching condition [8],

where w; is the frequency and f_i the wave vector, linking pump (p), signal (1), and idler (2). The

down-conversion is called type-I or type-II depending on whether the photons in the pair have parallel

or orthogonal polarization. The light quanta of the pair that emerges from the nonlinear crystal may

propagate in different directions or may propagate collinearly. The frequency and propagation directions

are determined by the orientation of the nonlinear crystal and the phase matching relations in (1).

In order to understand the two-photon behavior of SPDC, consider the experiment which is shown

in Fig. 1, a simple beam-splitting experiment. Assume that a type-II BBO (fl - BaB204) crystal is

used for the SPDC. The collinear down-conversion beam is split by a beamsplitter. The beamsplitter

is mssumed to be pol_ization dependent so that the o-ray is transmitted and the e-ray is reflected.

Single photon counting detectors D1 and D2 are placed in the transmission and reflection output ports

of the beamsplitter for detecting the o-ray and the e-ray, respectively. An introduction of the effective

wavefunction _(tl, t2) is helpfill for understanding the physics of the phenomenon.

? | =t,= <:_
702.2 am l BBO

..,__.__ Type II I

_-_, c,yst= ,',.ri..,, •

Plates \ I

'._/_=yz_o) I Figure 1. Schematic experiment for
" t study of the type II SPDC biphoton.

i s_ .__.I _'_'" I
I -I c.,.,.t,,, BS is a beamsplitter. Dt and D2 are

_] N¢___ photon counting detectors. A coinci-_._ (4s>i_ dence circuit is used for recording the
I \l\l coincidence rate.

For collinear type-II SPDC, a two-photon part of the state exiting the crystal may be ealctflated from

the standard theory of SPDC [9].

I,r) = E ,+(_v,+ _2 - ,v,,)¢Ck,+ k2- kp),,ot (_, (k,)),,.t (_v2(k2))o> (2)
1,2

The effective waveflmction may be calculated for the system presented in Fig.1 [9]

+(tl,tm) = (OIEI+)E(2+)I+). (3)

• (tt, t2) = v(q + t2)u(q - t2) (4)

v(t) = voezpC-i_pt/2)

Vu(t) = uOezp(--iwdt/2) dr[1 - exp(-uDL)]/(iuDL)exp(-ivt)

= e.r,p(-iwet/2)II(t)
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"_to DL >t >0I](t) = 0 (5>

where "0, '**.f_;trc constants (norm;dizat.i,m). Wc lmv_ nt)pr,-_ximat.e_t t.lw tromp t.o be a piano wave iI, t.he

cah'uladon. If l:he pump tn'nnl were taken t.o 1.: a Gmtssian with }.mdwidth czp, it is n,,t difficult t:o show

t.hat, the const;u_t v() will be replaced by ;t Gaussian function voc:?:p(-cr_t2/8).

E(luatioll (.1)demonstrates a t.wo dimensional wavepacket, referred t(J ;m the t.w,>t)hot,m effective

w;weflmCdOll ,u' fin" short tile Biphohm. [8, 9]. It is clear that the biph,_ton is entangled in spaco-time

l)(?cnusc the wav_?funct:ion can not: f;wt(n' int.o a f, mction (,ftt _im,-.s a timer.ion ,d t2.

Fig. 1 illustm'tes the ,'.xt)c_rim,'nt_d set. up fin the vm'ificadon ,,f II-shaped lfip},,t.,m. The tmamst,litter

is t_,Jnrizat:.i_,n incbpendcnt, so thin. }_,Ml tim o-r;w and the c-ray ('(told be transmitt.,.d (n" r(.fle('tod to

t.rigg,.r D1 or D._,. A Glan Th(..ps, m li.m_r t)ol;u'iz_tti(ul mmlyzer, m'iented at 45" rclat.iv,, l,, the o-ray

and c-r;ty l)olariznt.ion pl_mrs ,_f dm BB() crystal, is place_l in fl,mt of each of the (tetectors. Birefl'ingent

ntat,wial, fl)r ('×mnt>le a set ()f quartz plat.cs, is introduced into tho single incid,mt. }),!am for mmfip,flndng

tlw ,,ptical d,Jay 5 belwe,'n the o-ray and lJle ¢>ray. The fast axes ,d the (lll;t_l'tZ plat.s were carcflflly

aligned to lnatc}, the o-r;ff (_l" c-lmy in_la.rizati,m planes ,)f the BB() crystal. In ,n'(h_r t.,, se_ l.h,, '..tu,'al

._pcctr'..l sh.op. ,_f _.t_e SPDC. n- ;tlly narrow|)mM spcct:ral tiltcl'S a.r,. ,me(1 except UV tilt. (_tI' tilters t,, get

rid .f t,h(! t)UlUt_ s('at, t,(!r(:d ligl,t [[()].

It. is int.cr,'st.in g to see Chn¢ wlwn ,_,_ quartz plm:cs ;u'e used the two terms iil the {>f['octivc w;_v.*',m('ti.n

(4) do _.,t. sI.,w any intcrf.r.twc sil,c{ _ [I(tl - re) arm II(t., - tl ) ,h, _,,t. owM;,p. Physically it. means that

tit,', o-r;ty ;tn(t t.lw (-rtty ph_t(ms ;tl'(? w,'ll disth_guished in spac(,-tinle. Now c, msidcr tlt,> case ,}t"having a

(t_l;trt.z tJnt.c in the down-('_nv,_rsi_._ incident beam. [f we ;dign t.he qum't.z ca.reflllly to lnatc}_ its f;tst, axis

t.,, tim o-ray tndm'izati_,n ,lir,'cti_,n ,,f t.lw I_B(). mt opt.ical delay, £ _ (n,, - 'n,.)l/(:, is introd,u:,!,l betw,'el_

the o-fay gtIl(] LIt," c-t';ty (d' BB(). wl.'r,_ n,, an,t ._ are d.'. in(h'x of rc]'racl.ion of the (lU;U't% t)l;tt,_s fl,r

/.he o-ray a.n(t tll(. C-ray ,,f 13B(), a,l.i 1 is the thickness of the ([ll;t.l'tZ [)I&U< Tilt-.. (qft_ctiv(! w;tv(_fullc'tion

I.I_?C,_III,_S ("(,llSi,t"]' t:h,? ;ul.:tIyzcl',S ;i.1_! sl!t. ;tl; 45"),

9(_.t-,) = ,r,,_.,,,,(t_ + t,, - _)[v,(t_ - t2 + _) -,,(-t_ + te +,_)] ((;)

It is ,_nsy t.,, s('(', fr, ml etl.(6) dmt th,u'c is interfl'.rence now, because th,_ tw,) t.ern,s _mu'la.l). \_hen

= I)L/2 ,the two) terms c,,mt)h_tcly (m!rht t) a.nd dmrefl_re c:anc(!l e;tch other. This tn;ty }),! (',msi(t,_r,'d ns

a tmrfl'ct. ;u_ti-c(_rrelad_m.

I_,. = lt,.[1- p(_)]

0 -_c, < _ < 0

,,_ 0 < ?_ < DL/2

/' = 1-_:(_-DI/2) DL/2 < ,S < DL

{} DL < 5 < _c,

(7)

The width and the shat)e ,_f the l,iphot,m can be evaluated by t.}_,: width and the shape of R,..

Fig.2 reports typically ,)bs,..rw:d "V-shape" c(,inciden('c rat,', llle;/.Sllrelllellt;.s ;_s ;t flm(:t.ion (,f the .ptical

dcl;w ,5. which verifies the [I-sh;t[)(_ ,_ffectiw_ w;tvefllll(:tioll [10]. E;tch of the d_tt.;t points ('()rr(_stmtl(lS to

diff'or(mt nmnbors of qunr_z I)lat(>s r,'maining in the path of the down-c(,nversi,,n in('i,hmt )>cam. It. is

easy t() find dmt. the vert(,x ()f tim V-s}mp(" flmction has a displac(,.nmnt ()f (72 :t: 3)./'s from Zel'(), which
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corresponds to a time delay of DL/2 in a (0.56 + 0.05)ram BBO crystal.
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A strong correlation which appears in the form of almost a 100% destructive quantum interference

is a clear demonstration of the situation where the Einstein-Podolsky-Rosen argument [1] is directly

applicable. The triangular shape of the correlation flmction is a clear signature of the rectangular shape

of original two-photon effective wavefunction. The discussion of the effective waveflmction is important

Mso for the understanding of the two-photon double entanglement.

Figure 2. Lower curve: Coincidence

counts ,as a flmetion of optical delay,

which corresponds to a certain number

of quartz plates. The solid curve is a

fitting curve of eq.(7). Upper curve:

Single detector counts.

3 Double Bell's inequality

Taking advantage of the spin and space-time entanglement of the biphoton, another type of two-photon

interference phenomena can be demonstrated. With the addition of a Pockel's cells, and a re-orientation

of the quartz plates and polarizers, the coincidence counting rate exhibits interference modulation of

the pump frequency when manipulating the voltage across the Pockel's cell, regardless of the optical

delay by the quartz plates (which is rn,nch greater than the, coherence length of the signal and idler down-

conversion fields). This two-photon interference effect is again due to a noncl,assical two-photon state

which is entangled both in spin and in space-time.

Type-II D2 F__,.II I Bao

2.4mm 11 quartz plates BS
quartz

Figure 3. Schematic set up for the new type two-photon interferometer.

F1

P1 A1

The schematic set up of the experiment is illustrated in Fig.3. The type-II SPDC is the same ,as that

in the quantum beats experiment. The collinear down-conversion beam p`asses through a set of crystal

quartz plates before the beamsplitter. The first three quartz plates, which sum to 2.4ram in thickness, are

oriented in a way to make the two terms of the H-shape function completely overlap (see the discussion

in section 2). 11 more crystM quartz plates follow these three. The fast axes of these 11 quartz plates are

aligned carefillly to be oriented at 45 ° relative to the o- ray and the e-ray polarization planes of the BBO

in order to introduce a new b`asis associated with the fast and slow axecies. Each of these quartz plates

is (1 4- 0.1)ram in thickness, resulting in an optical delay Al _ 9#m between the f_t and the slow rays
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of the quartz crystal at wavelengths around 700 nm. The optical delay is about 99#m after 11 quartz

plates in comparison with the coherence length of the field which is about 25#m. Therefore, the IX} and

the )Y) components of the original o-ray and e-ray of suffer enough opticM delay to be non-overlapping,

where IX) and mY) correspond to the fast and the slow axes of the quartz plates. A Pockel's cell with

fa.st and slow axes carefiflly aligned to match the IX) and the mY) axes is placed after the quartz plates

in each output port of the beamsplitter for fine control of the optical delay between the IX} and the [Y).

The spectral filters .fl and .fu have Gaussian shape transmission functions centered at 702.2nm, with

bandwidths of 19nm(filll width at half maximum).

The down-conversion [o) and le} polarized photons both have certain probabilities to be in the IX)

or the [Y) state when pressing through the crystal quartz plates and the Pockel's cells. The optical

delay between the IX} and the IY) is then introduced by the anisotropic refractive index of the quartz

plates and the Pockel's cells. The coincidence time window in this experiment is 1.Snsec, which is much

shorter than the distance between the PockeFs cells. Bell inequality memsurements can be performed for

both space-time variables and for spin variables in one experiment. For the 45 ° oriented polarizers, the

coincidence co, rating rate is predicted to be,

= R 0{1 - 21cos(a at, + n al2)/c} (8)

where Ali/c is the optical delay introduced by the ith Pockel's cell (to simplify the calculation, we assumed

the optical delays introduced by the Pockel's cells are the same).
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Figure 4. A typical observed sum

frequency modulation when the cross

voltages of the two PockePs cells are

manipulated (negative values corre-

spond to negative voltages). The in-

terference visibility is (88.2 -t- 1.2)%,

which violates a Bell inequality for

space-time variables by more than 14

standard deviations. [11, 12]

The manipulation of Alp is realized by changing the applied voltage of the Pockel's cells. The

coincidence co,rots are direct measurements, with no "accidentM" subtractions. It, is clear that the

modulation period corresponds to the pump wavelength, i.e., 351.1nm. Contrary to the coincidence

counting rate, the single detector counting rate remains constant when AIp is manipulated, ms is reported

in the upper part of Fig. 4.

It is interesting to see that in the same experiment, a test of a spin variable Bell ineq,,Mity can be

rome by manipulating the orientation of the polarizers at a totally constructive or destructive space-time

interference point. Because of the symmetries present in the measurement, we are able to study one

simple form of Bell's inequalities for polarization variables [13],

= l[R¢(_/8) - R_(37r/8)]/R0] <_ 1/4 (9)

and the mea._ured result is _ = 0.309+0.009, implying a violation of more than 6 standard deviations.[12]

4 Conclusion

Experiments starting with type-II down-conversion arc a very effective mechanism for generating two-

photon entangled states (biphoton). The typc-II SPDC biphoton is entangled both in space-time and
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spin. A two-photon eff0,ctive wave function produced by Type-II spontaneous parametric down conversion

is studied fin" its natural shape in space-time. The double entanglement of the two-photon state makes it

possible t,) perform EPl:l. type two-photon interference experinlents in a simple beam-st)litting set ,t t) and

test Bell:s inequalities fl)r space-time variables and spin variables in the same experiment. Two-photon

interfi_rence visibilit:y as high as (98 + 2)% has been observed. Experimental tests f,)r the space,-time

variat_les aim spin variables Bell in,xlualities have been measured with violations of 14 and 6 standard

deviations, respectively, in ()he, experim(',ntal set. up.
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